Effect of polymer chemistry on globular protein–polymer block copolymer self-assembly

نویسندگان

  • Christopher N. Lam
  • Shengchang Tang
  • Bradley D. Olsen
چکیده

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Bioconjugates of the model red fluorescent protein mCherry and synthetic polymer blocks with different hydrogen bonding functionalities show that the chemistry of the polymer block has a large effect on both ordering transitions and the type of nanostructures formed during bioconjugate self-assembly. The phase behaviours of mCherry-b-poly(hydroxypropyl acrylate) (PHPA) and mCherry-b-poly(oligoethylene glycol acrylate) (POEGA) in concentrated aqueous solution show that changes in polymer chemistry result in increase in the order–disorder transition concentrations (C ODT s) by approximately 10–15 wt% compared to a previously studied globular protein–polymer block copolymer, mCherry-b-poly(N-isopropylacrylamide) (PNIPAM). The C ODT s are always minimized for symmetric bioconjugates, consistent with the importance of protein–polymer interactions in self-assembly. Both mCherry-b-PHPA and mCherry-b-POEGA also form phases that have not previously been observed in other globular protein– polymer conjugates: mCherry-b-PHPA forms a cubic phase that can be indexed to Ia 3d and mCherry-b-POEGA displays coexistence of lamellae and a cubic Ia 3d structure over a narrow range of concentration and temperature. Several common behaviours are also revealed by comparison of different polymer blocks. With increasing concentration and temperature, ordered phases always appear in the order lamellar, cubic/PL, and hexagonal, although not all phases are observed in all materials. High concentration solutions (near 80 wt%) also undergo a re-entrant order–disorder transition to form nematic liquid crystalline phases, regardless of the polymer block chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetically controlled nanostructure formation in self-assembled globular protein-polymer diblock copolymers.

Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal con...

متن کامل

Blending block copolymer micelles in solution; Obstacles of blending.

Amphiphilic block copolymers can assemble into a variety of structures on the nanoscale in selective solvent. The micelle blending protocol offers a simple unique route to reproducibly produce polymer nanostructures. Here we expand this blending protocol to a range of polymer micelle systems and self-assembly routes. We found by exploring a range of variables that the systems must be able to re...

متن کامل

Polymer–surfactant Interactions

Surfactants and polymers are two of the important components in detergent formulations. The interactions between polymers and surfactants in aqueous media give rise to the formation of association structures, thereby modifying the solution and interfacial properties. The morphologies of association complexes depend on the molecular properties of the polymer and the surfactant. In this paper, we...

متن کامل

Block copolymer assembly to control fluid rheology

Recent experimental studies on the rheology of block copolymer micelles are reviewed. Where appropriate, we draw analogies between the viscoelastic properties of polymeric micelles and those of colloidal dispersions. We also present some important differences between these two classes of complex fluids, namely the ability to tune self-assembly through solvent polymer interactions. Finally, new ...

متن کامل

Self-Assembly of Block Copolymer Chains To Promote the Dispersion of Nanoparticles in Polymer Nanocomposites

In this paper we adopt molecular dynamics simulations to study the amphiphilic AB block copolymer (BCP) mediated nanoparticle (NP) dispersion in polymer nanocomposites (PNCs), with the A-block being compatible with the NPs and the B-block being miscible with the polymer matrix. The effects of the number and components of BCP, as well as the interaction strength between A-block and NPs on the sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014